Expanded graphite as superior anode for sodium-ion batteries.

نویسندگان

  • Yang Wen
  • Kai He
  • Yujie Zhu
  • Fudong Han
  • Yunhua Xu
  • Isamu Matsuda
  • Yoshitaka Ishii
  • John Cumings
  • Chunsheng Wang
چکیده

Graphite, as the most common anode for commercial Li-ion batteries, has been reported to have a very low capacity when used as a Na-ion battery anode. It is well known that electrochemical insertion of Na(+) into graphite is significantly hindered by the insufficient interlayer spacing. Here we report expanded graphite as a Na-ion battery anode. Prepared through a process of oxidation and partial reduction on graphite, expanded graphite has an enlarged interlayer lattice distance of 4.3 Å yet retains an analogous long-range-ordered layered structure to graphite. In situ transmission electron microscopy has demonstrated that the Na-ion can be reversibly inserted into and extracted from expanded graphite. Galvanostatic studies show that expanded graphite can deliver a high reversible capacity of 284 mAh g(-1) at a current density of 20 mA g(-1), maintain a capacity of 184 mAh g(-1) at 100 mA g(-1), and retain 73.92% of its capacity after 2,000 cycles.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Improved Mechanical and Electrochemical Properties of Artificial Graphite Anode Using Water-Based Binders in Lithium-Ion Batteries

In recent years, many studies have focused on the active materials of anodes to improve the performance of LIBs, while limited attention has been given to polymer binders, which act as inactive ingredients. However, polymer binders have amazing influence on the electrochemical performance of anodes. Herein, to investigate the binding performance between MCMB artificial graphite and the copper c...

متن کامل

Metallic Sn‐Based Anode Materials: Application in High‐Performance Lithium‐Ion and Sodium‐Ion Batteries

With the fast-growing demand for green and safe energy sources, rechargeable ion batteries have gradually occupied the major current market of energy storage devices due to their advantages of high capacities, long cycling life, superior rate ability, and so on. Metallic Sn-based anodes are perceived as one of the most promising alternatives to the conventional graphite anode and have attracted...

متن کامل

Amorphous Sb2S3 embedded in graphite: a high-rate, long-life anode material for sodium-ion batteries.

Amorphous Sb2S3 embedded in a conductive graphite matrix is designed for sodium-ion batteries. Owing to the amorphous structure of the active phase and the conductive graphite matrix, the Sb2S3-graphite electrode exhibits a high initial Coulomblic efficiency, a high rate capacity, and stable cycle performance in sodium-ion batteries.

متن کامل

Recent Progress in Design of Biomass-Derived Hard Carbons for Sodium Ion Batteries

Sodium ion batteries (SIBs) have attracted lots of attention over last few years due to the abundance and wide availability of sodium resources, making SIBs the most cost-effective alternative to the currently used lithium ion batteries (LIBs). Many efforts are underway to find effective anodes for SIBs since the commercial anode for LIBs, graphite, has shown very limited capacity for SIBs. Amo...

متن کامل

Expanded graphite embedded with aluminum nanoparticles as superior thermal conductivity anodes for high-performance lithium-ion batteries

The development of high capacity and long-life lithium-ion batteries is a long-term pursuing and under a close scrutiny. Most of the researches have been focused on exploring electrode materials and structures with high store capability of lithium ions and at the same time with a good electrical conductivity. Thermal conductivity of an electrode material will also have significant impacts on bo...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Nature communications

دوره 5  شماره 

صفحات  -

تاریخ انتشار 2014